650=8x+4.9x^2

Simple and best practice solution for 650=8x+4.9x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 650=8x+4.9x^2 equation:


Simplifying
650 = 8x + 4.9x2

Solving
650 = 8x + 4.9x2

Solving for variable 'x'.

Reorder the terms:
650 + -8x + -4.9x2 = 8x + -8x + 4.9x2 + -4.9x2

Combine like terms: 8x + -8x = 0
650 + -8x + -4.9x2 = 0 + 4.9x2 + -4.9x2
650 + -8x + -4.9x2 = 4.9x2 + -4.9x2

Combine like terms: 4.9x2 + -4.9x2 = 0.0
650 + -8x + -4.9x2 = 0.0

Begin completing the square.  Divide all terms by
-4.9 the coefficient of the squared term: 

Divide each side by '-4.9'.
-132.6530612 + 1.632653061x + x2 = 0

Move the constant term to the right:

Add '132.6530612' to each side of the equation.
-132.6530612 + 1.632653061x + 132.6530612 + x2 = 0 + 132.6530612

Reorder the terms:
-132.6530612 + 132.6530612 + 1.632653061x + x2 = 0 + 132.6530612

Combine like terms: -132.6530612 + 132.6530612 = 0.0000000
0.0000000 + 1.632653061x + x2 = 0 + 132.6530612
1.632653061x + x2 = 0 + 132.6530612

Combine like terms: 0 + 132.6530612 = 132.6530612
1.632653061x + x2 = 132.6530612

The x term is 1.632653061x.  Take half its coefficient (0.8163265305).
Square it (0.6663890044) and add it to both sides.

Add '0.6663890044' to each side of the equation.
1.632653061x + 0.6663890044 + x2 = 132.6530612 + 0.6663890044

Reorder the terms:
0.6663890044 + 1.632653061x + x2 = 132.6530612 + 0.6663890044

Combine like terms: 132.6530612 + 0.6663890044 = 133.3194502044
0.6663890044 + 1.632653061x + x2 = 133.3194502044

Factor a perfect square on the left side:
(x + 0.8163265305)(x + 0.8163265305) = 133.3194502044

Calculate the square root of the right side: 11.546404211

Break this problem into two subproblems by setting 
(x + 0.8163265305) equal to 11.546404211 and -11.546404211.

Subproblem 1

x + 0.8163265305 = 11.546404211 Simplifying x + 0.8163265305 = 11.546404211 Reorder the terms: 0.8163265305 + x = 11.546404211 Solving 0.8163265305 + x = 11.546404211 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8163265305' to each side of the equation. 0.8163265305 + -0.8163265305 + x = 11.546404211 + -0.8163265305 Combine like terms: 0.8163265305 + -0.8163265305 = 0.0000000000 0.0000000000 + x = 11.546404211 + -0.8163265305 x = 11.546404211 + -0.8163265305 Combine like terms: 11.546404211 + -0.8163265305 = 10.7300776805 x = 10.7300776805 Simplifying x = 10.7300776805

Subproblem 2

x + 0.8163265305 = -11.546404211 Simplifying x + 0.8163265305 = -11.546404211 Reorder the terms: 0.8163265305 + x = -11.546404211 Solving 0.8163265305 + x = -11.546404211 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8163265305' to each side of the equation. 0.8163265305 + -0.8163265305 + x = -11.546404211 + -0.8163265305 Combine like terms: 0.8163265305 + -0.8163265305 = 0.0000000000 0.0000000000 + x = -11.546404211 + -0.8163265305 x = -11.546404211 + -0.8163265305 Combine like terms: -11.546404211 + -0.8163265305 = -12.3627307415 x = -12.3627307415 Simplifying x = -12.3627307415

Solution

The solution to the problem is based on the solutions from the subproblems. x = {10.7300776805, -12.3627307415}

See similar equations:

| 11.517511068*9.8=x | | 650=4.9t^2 | | 6+9x=2(x-11) | | x/5-3/10=1/2 | | x-10squrt(x)-56=0 | | x-10squrtx-56=0 | | 3x+4.9x^2=800 | | 3x^2-139=41 | | 3n-15+n=101 | | 25x^2+18=40x | | 9x^2+9x-108= | | 4.9x^2=800 | | (3x+12)(9x-14)= | | x^3-5x^2+2x+7=0 | | (3x+12)(12x-23)= | | 2d+4.2d-4=4-81-16 | | x-0.2=4.72-0.2x | | y+z+3x+62+49= | | y=-x^2-4x-5 | | P=2(88)+2(149) | | 9.38=3.5+1.2(6.3-7x) | | 8x^4+15x^3-2x^2+x+4=0 | | 9a-7(a+1)= | | 70x-5x^2=0 | | 2y^4+3y^3-24y^2=0 | | 2.7x-11.22=6.6 | | 6w-12=-50w-5 | | 15.6=-3.9r | | 32=0.4x+2 | | r^2=x^2+y^2 | | P=5ab | | 3t-18=4(-3-3/4 |

Equations solver categories